Electronic spin states of ferric and ferrous iron in the lower-mantle silicate perovskite
نویسندگان
چکیده
The electronic spin and valence states of iron in lower-mantle silicate perovskite have been previously investigated at high pressures using various experimental and theoretical techniques. However, experimental results and their interpretation remain highly debated. Here we have studied a wellcharacterized silicate perovskite starting sample [(Mg0.9,Fe0.1)SiO3] in a chemically inert Ne pressure medium at pressures up to 120 GPa using synchrotron Mössbauer spectra. Analyses of the Mössbauer spectra explicitly show a high-spin to low-spin transition of the octahedral-site Fe3+ occurring at ~13–24 GPa, as evidenced from a significant increase in the hyperfine quadrupole splitting. Two quadrupole doublets of the A-site Fe2+, with extremely high-QS values of 4.1 and 3.1 mm/s, occur simultaneously with the spin transition of the octahedral-site Fe3+ and continue to develop to 120 GPa. It is conceivable that the spin-pairing transition of the octahedral-site Fe3+ causes a volume reduction and a change in the local atomic-site configurations that result in a significant increase of the quadrupole splitting in the dodecahedral-site Fe2+ at 13–24 GPa. Our results here provide a coherent explanation for recent experimental and theoretical results on the spin and valence states of iron in perovskite, and assist in comprehending the effects of the spin and valence states of iron on the properties of the lower-mantle minerals.
منابع مشابه
Electronic Spin Transitions of Iron and Geoelectrons in Earth’s Mantle
Based on a pyrolitic compositional model, the lower mantle is mainly made of ferropericlase, aluminous silicate perovskite, and calcium perovskite. Silicate perovskite transforms into silicate post-perovskite structure just above the core-mantle region, the D" layer. The existence of iron in the lower-mantle minerals can affect a broad spectrum of the minerals’ physical and chemical properties....
متن کاملFirst-principles study of spin-state crossovers and hyperfine interactions of ferric iron in magnesium silicate perovskite1
Submitted for the MAR11 Meeting of The American Physical Society Sorting Category: 19.1 (C) First-principles study of spin-state crossovers and hyperfine interactions of ferric iron in magnesium silicate perovskite1 HAN HSU, University of Minnesota, PETER BLAHA, TU Vienna, MATTEO COCOCCIONI, RENATA WENTZCOVITCH, University of Minnesota — The spin-state crossover in iron-bearing MgSiO3 perovskit...
متن کاملElectronic spin transition of iron in the Earth's deep mantle
spin is a quantum property of every electron, associated with its intrinsic angular momentum. Though there are no suitable physical analogies to describe the spin quantum number, there are two possibilities , called spin 'up' and spin 'down.' The electronic structure of iron in minerals is generally such that valence electrons will more abundantly occupy different spatial orbitals and maintain ...
متن کاملFirst-principles studies of spin-state crossovers of iron in perovskite
The discovery of spin crossovers in iron under pressure in ferropericlase and iron-bearing magnesium silicate perovskite, the major mineral phases of the Earth’s lower mantle, ignited in the last eight years intense discussions on the nature of this phenomenon and potential effects on the state and evolution of the Earth’s mantle and of the planet as a whole. The nature of spin crossover in fer...
متن کاملFirst-principles study of intermediate-spin ferrous iron in the Earth’s lower mantle
Spin crossover of iron is of central importance in solid Earth geophysics. It impacts all physical properties of minerals that altogether constitute ∼95 vol% of the Earth’s lower mantle: ferropericlase [(Mg,Fe)O] and Fe-bearing magnesium silicate (MgSiO3) perovskite. Despite great strides made in the past decade, the existence of an intermediate-spin (IS) state in ferrous iron (Fe2+) (with tota...
متن کامل